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1 Introduction 
Extraction of spectra from HIRES raw images is an important step towards producing 
science from the HIRES data. Proper extraction relies on an intimate knowledge of the 
goals of the science, and an excellent understanding of the instrument, how the data were 
obtained, and what products are desired from the extraction. With this in mind, KOA 
strongly recommends that archive users extract the spectra themselves from the raw data. 
Nevertheless, the archive provides an extracted spectra “browse product,” useful for 
getting a better idea of the type of data that might be extracted from the raw images. The 
archive does this by running an automated data reduction pipeline (DRP) that uses 
standard techniques and the extraction program MAKEE in order to produce spectra of 
individual orders from the 2-D raw images. 

Such an automated pipeline cannot hope to properly extract 100% of the orders. This is 
for various reasons: 

• Sometimes raw images, or subsets of them, were never intended to allow spectral 
extraction. This could be the case, for instance, when an observer is interested in 
the red parts of the spectrum, and uses a slit length that is optimal for those 
wavelengths, while allowing orders in the blue to overlap. 

• It may be unclear to any but the original P.I. what objects were expected to be 
extracted. This can occur if there are two or more objects on the slit at the same 
time. Which object was intended for reduction? 

• The reduction tool may make assumptions about the science object that are wrong 
in some cases. For instance, MAKEE if optimized for point sources. A spectrum 
of an extended object that fills the slit would require significantly different 
extraction techniques. 

• The original observer may have failed to take appropriate calibration data. This 
sometimes occurs when the data were not meant for science (e.g. a test exposure 
to get a quick subjective feel for the target’s spectrum), or the observer simply 
made a mistake. 

When the DRP runs on the entire set of HIRES data, it will sometimes fail to produce any 
output. When it does produce output, that output may or may not be of high quality. In 
this latter case, it is of use for the archive to provide some indication of the level of 
quality of the extracted spectrum. With roughly 1,000,000 orders in the archive, it would 
be extremely expensive to manually inspect and grade each order. Hence, we have set up 
a process to provide automated grading of each order, as we now discuss. 

2 Goals 
As mentioned, we wish to provide some system of grading for each of the roughly 
1,000,000 orders in the archive. We have chosen to represent this, at least conceptually, 
as assigning grades A–D and F to each order.  
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A grading system should be statistically accurate enough to provide some reasonable 
level of value to the user. In this case we would like to provide value to the end user, i.e. 
the archive user. We would like to be able to provide some indication of the quality of the 
spectral extraction. However, as the highest priority, we would like to indicate which 
extractions are particularly bad. We choose this as the highest priority in part because the 
natural assumption of an archive user is likely to be that the products are all good, and we 
want to manage expectations in situations where that assumption is not true. 
Hence, our top goal is: 

• Automatically identify, at 90% or better, extractions which contain no sign of the 
underlying, good data, but instead are dominated by extraction problems. We 
would grade these “F.” 

Our secondary goals is: 

• Avoid misclassifying more than 2% of the excellent extractions, defined as those 
that show no sign of extraction problems, but appear to be highly accurate 
representations of the underlying data, as poor extractions. We would grade these 
“A.” 

While we could define many more goals, such as accurate classification of spectra that 
show some extraction problems, but clear signs of the underlying data, the goals we have 
set above are significantly complicated and open-ended that we will concentrate on 
meeting them. 

3 Technique 
Without some “ground truth” to reference, e.g. a pre-existing spectrum of the object that 
can be compared to the KOA extraction, determination of the quality of an extraction is 
necessarily somewhat subjective. Since HIRES represents state-of-the-art equipment on 
one of the largest telescopes in the world, we are unlikely to find existing data of 
comparable quality, hence we make the assumption that we must proceed without 
“ground truth” to guide us. 

Nevertheless, an expert can look at a HIRES spectrum and provide a reasonable 
assessment as to what is real and what is an extraction artifact. Visual grading such as 
this is extremely resource intensive, and visual grading of a million spectra would take 
prohibitively long. 

Hence we search for an algorithm that can be used to classify data, and that can be 
automated to rapidly provide classifications for all of the extracted orders. In order to 
develop this algorithm we have followed these steps: 

• Select a number of observations of different types of objects, taken with different 
observing techniques, to provide a representative sample of conditions under 
which KOA is expected to produce extracted spectra. 

• An expert visually grades those spectra. This provides a “training set” that is used 
to test potential classification algorithms. It also provides a trusted data set which 
is used to train other “graders,” and provides examples of different levels of 
extraction fidelity for archive documentation purposes. 
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• A set of parameters is developed that may have some bearing on the extraction 
quality. For example, the number of errors generated in the log file during the 
extraction, or the number of pixels rejected during profile or sky fitting, etc. 

• The values of these parameters for the training set are compiled, and correlations 
between the visual grade and the parameter values are sought. 

• From such correlations, algorithms are developed and tested, with the goals stated 
in section 2 being the primary criteria. 

• Once a suitable algorithm is found, it is automated, and run on all million orders 
in the archive. 

• A second, random sample set of data is selected, to be used as a confirmation, and 
a better statistical measure of the accuracy of the classification algorithm. While 
the training set was somewhat deliberately chosen to represent all aspects of data 
taken with HIRES, it does not represent a statistical sample, since some types of 
data will be rarely taken, and other types (e.g. planet hunters) will be very 
common in the database. The random sample is meant to be a less biased, 
statistical sample. 

• A second round of visual grading of the random sample is used to compare to the 
results of the classification algorithm, and statistics are compiled from that. These 
are the statistics that represent the true rate of correct and incorrect classifications 
in the archive. 

• Assuming that the results from the classification algorithm are satisfactory 
(meeting the goals given in section 2), those grades are then used in the archive to 
provide guidance to archive users on the quality of the extraction. 

We now give details about these various stages, and provide some results of the 
algorithm development. 

3.1 The training set 

3.1.1 Sample selection 
The goal of defining the training set was to sample most of the types of data and styles 
and techniques of observing that are encountered in the HIRES data. It is not intended to 
be an unbiased statistical sample of the data that closely matches the frequency with 
which the various data and techniques are represented in the archive. It is rather meant to 
sample the entire range of data. 
In order to accomplish this, we chose a wide range of observers. Since observers tend to 
take a series of data of similar type, and use similar techniques for their data collection, 
this seems like a good proxy. We chose one night from each of more than 30 observers, 
ending up identifying 32 nights in this manner. 
Since the number of observations in these 32 nights was still prohibitively large, we 
further reduced the number of CCDs by choosing the first two observations of each night. 
This has the further advantage of often (not always) sampling a science target and a 



 6 

brighter, calibration standard, again representing a range of what might be observed 
during each night. 

We used all three CCDs for each of the selected observations, since the different CCDs 
represent different types of data, such as different interorder separation, and different flux 
levels. 

3.1.2 Visual grading 
Our final training set consisted of 2839 orders. These were visually graded by one of us 
(Goodrich), using a Web interface constructed and streamlined specifically for this 
purpose. 
Grades of 1, 3, or 5 were assigned to each order. These were defined as follows: 

• Grade 1: extractions that show no evidence of any extraction problems, but appear 
to be an excellent representation of the true underlying data. In a lettered scheme 
these would be grades “A.” 

• Grade 3: extractions that show some combination of the underlying data and 
extraction problems. These would be graded B, C, or D in a lettered scheme. 

• Grade 5: extractions that show no evidence of the underlying data, but are 
dominated by extraction problems. These would be graded “F.” 

Note that grade 3 encompasses a range of different extraction qualities. This was done 
purposely for two reasons: to limit the complexity of the resource-intensive visual 
grading stage, and to avoid the problem of trying to define the differences between grades 
B–D. A consequence of this decision is that while grades 1 and 5 are very clearly defined, 
orders of grade 3 can be either nearly “perfect” extractions, close to grade 1, or barely 
passable extractions, close to grade 5. Given the stated goals (section 2) and the 
complexity of developing an appropriate algorithm even for those limited goals, this 
seems like a prudent decision. 
We did, however, leave room for dissecting grade 3s into finer grades by not using the 
digits 2 and 4. Should it be deemed necessary to provide finer grading, we can use those 
two digits to represent the “B” and “D” grades, respectively. 

In a small fraction of the cases it was impossible to grade an order using the graphics 
provided on the Web page. (Those graphics are identical to what will be provided on the 
archive user interface.) Usually this was because a single ion hit caused the autoscaling 
feature of the plotting to plot on such a scale that the rest of the order was unresolved on 
the plot. Hence no grade was assigned, and instead we recorded a question mark (“?”) in 
the database. 

3.1.3 Results 
Of the 2839 orders visually graded, the numbers of grades assigned were: 
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Table 1. Results of visual grading of the training set 

Grade Number Percentage1 

1 2498 88 

3 191 7 

5 143 5 

? 7 n/a 

1. The percentage does not include the ungraded ones marked “?”. 

The majority of the extractions, nearly 90%, are excellent. Relatively few are grade 5 (or 
“F”). Recall that roughly ¼ of the CCDs do not make it successfully through the MAKEE 
reduction process, and hence do not provide any output products (other than a log file). 
However, when output products are produced, MAKEE provides good quality. 

3.2 Parameters for automation 
Using the training set, we scanned through log files looking for clues that an automated 
classification algorithm might use to correctly grade an extraction. Once the list was 
gathered (Table 2), scripts were written to extract the parameters from the log files and 
into a database, where they could be further analyzed. Note that at this stage only the 
parameters from the training set are required.  

Table 2. Parameters for grading algorithm 

Parameter 
name 

Description Source 

errors Number of errors encountered in fitting the object profile. Log 

priSky The number of pixels rejected from the first pass of the sky 
fitting. 

Log 

adjSky The number of pixels effected in adjacent columns Log 

addSky Additional pixels rejected in a second pass Log 

highObj One side of object window Log 

lowObj Other side of object window Log 

pse0  Log 

cosmic Number of “cosmic rays” rejected. Log 

traceWidth Total width of the trace. Log 

3.3 Correlations 
In general the technique used to search for correlations was to sort by some parameter, 
usually in descending order so that large values of the parameter are at the top, and then 
look for evidence that this parameter provides a good discriminant between grades 1 and 
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5. Alternatively, sorting by grade, and seeing whether grade 5s showed any anomalous 
values of the parameters could be used. In this way the most promising parameters were 
identified efficiently. 
Further analysis was done by plotting either the distribution function or the cumulative 
distribution function of the parameter. This was done separately for each grade. Clear 
differences between the functions for different grades indicates a good discriminant, and 
the value at which that parameter separates the grades. 
An example of a distribution function is shown in Figure 1.. The number of errors in the 
log file for the order is the abscissa, and the frequency of the different grades is the 
ordinate. These errors are generated during a fit to the object profiles, and represent  an 
inability of the reduction tool to properly identify the pixels containing flux, and 
potentially confuse the object and sky pixels. Note in this figure that grades 1 and 3 are 
not well separated, but for N(errors) ≥ 5, this parameter provides a reasonable 
discriminant between grades 1+3 and grade 5. 

 
Figure 1. Distribution function for the number of errors in the log file for the three 

grades. 
When using cumulative error distribution functions, such as shown in Figure 2, we 
looked for regions where the y-axis separation of the different grades (in particular grades 
1+3 and grades 5) is large. 
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Figure 2. Cumulative distribution function for the parameter priSky. 

In Fig. 2 if you look at the separation between the green line and the red line at an x-value 
of 10,000, you can see that roughly 60% (100% minus the y-axis value) of the grade 5s 
have priSky greater than this value, but only <1% of grade 1s have a value at least this 
high. If you look at priSky ≥ 20,000, only 40% of the grade 5s are found, and also fewer 
grade 1s. The equivalent of not using this parameter is priSky = ∞, i.e. at the rightmost 
end of the entire cumulative distribution. (The plot as shown does not extend that far.) 

3.4 Classification algorithm 
As a result of the search for discriminants between grades 1 and 5, we produced the 
following algorithm: 

1. Orders with N(errors) ≥ 5 were classified as grade 5. 
This correctly identified 52% of the orders with a visual grade of 5, and 
incorrectly identified only 0.16% of the visual grade 1s as grade 5. This 
corresponds to only 4 of the 2498 grade 1 orders being classified as grade 5. (This 
part of the algorithm also classified 7 grade 3s, or 3.7%, as grade 5s.) 

2. Of the remainder [those with N(errors) < 5], those orders with priSky > 4000 were 
also classified as grade 5. 

The combination of these two criteria classified 90% of the visual grade 5s correctly, and 
misclassified only 1.6% of the grade 1s. The algorithm thus meets our goals (section 2) 
for the training set. 
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Note that looking at the parameters for some of the orders visually graded 5 show nothing 
that would indicate that the extraction was poor. Hence 100% accuracy of an automated 
classification algorithm should not be expected.  

3.5 The random sample 
In order to independently verify the performance of the chosen classification algorithm, 
we generated a random sample of 64 observations to grade via the algorithm and by 
separate visual grading. Note that the random sample may include previously graded 
observations, since they both draw from the same parent population. 

The random sample contained 2912 orders, similar in size to the training set. Results are 
shown in Table 3. 

Table 3. Visual and automated grading of the random sample 

Grade Visual 
grading 

Automatic 
grading 

% misgraded 

1 2515 2793 1.7 

3 144 n/a n/a 

5 154 119 64.3 

? 7 n/a n/a 

The “% misgraded” column for grade 1s in Table 3 is calculated as the percentage of 
visual grade 1s that were graded 5 by the automated algorithm. Similarly, the “% 
misgraded” for grade 5 is calculated as the percentage of visual grade 5s that were 
automatically graded as 1s. Our goals (section 2) were that the first number be less than 
2%, and the last number be less than 10%. While the first goal is met, the automatic QA 
system misgraded nearly 2/3 of the grade 5s. 
In visually grading the random sample, it was noticed that the misgraded orders tend to 
be the lowest numbered (bluest) orders on the CCD.  Profile plots provided by MAKEE 
showed a tendency for only half of the profile to be shown in these orders.  So there is 
some hope that if the visual cue that there is a potential extraction problem can be 
converted into an automatic step, an updated QA algorithm may be able to perform 
better. 

4 Conclusions 
Visual QA of the KOA extracted spectra is resource intensive, so an automated solution 
was sought. An initial sample was chosen to represent a wide range of HIRES 
observation types, and development of an algorithm from this sample met our goals of 
<2% misclassified good extractions, and <10% misclassified poor extractions. 
However, when applied to a random sample of HIRES spectra, the QA algorithm did not 
meet our goal of <10% misclassified poor extractions, erroneously grading 64% of those 
orders as “pass.” The random sample better represents the archive contents in terms of 
the numbers of each type of observation. 
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Visual cues are available for many poorly extracted orders, so more work on the QA 
algorithm could well provide more reliable grading. 

5 Appendix: methodology behind classification 
algorithm 

There is a wide variety of techniques that can be used to develop an automated QA 
system. We discuss some of the theoretical aspects below. 

5.1 Parameters as a multidimensional space. 
We identified a number of parameters that could have some bearing on the quality of the 
order extraction, including lines printed to the log file and fit parameters saved in the 
FITS files and headers. We essentially treat this parameter set as a multidimensional 
parameter space, and ask what part of this space is occupied by the good extractions and 
the poor extractions. Assuming that the two groups are well separated in this 
multidimensional space, in principle the groups can be identified algorithmically, and an 
automated QA system employed. 

5.2 Cut on a single parameter (plane perpendicular to that axis) 
The simplest way of dividing the parameter space is to make a cut using a single 
parameter (e.g. “X > 5” and “X ≤ 5”).  This represents a plane perpendicular to that axis 
(the X axis in the example). 
Multiple parameters with independent cuts can also be made, representing planes 
perpendicular to different parameter axes. This is the approach taken in the analysis 
above. 

5.3 Linear combinations of parameters (plane at an arbitrary 
angle in N-space) 

Cuts that involve multiple dependent parameters are a further refinement (e.g. “3*X+4*Y 
> 17”) represent planes at arbitrary angles in the multidimensional parameter space. 
Again, multiple planes can be used to refine the volume separation. 

5.4 Higher order functions. (curved surfaces in parameter 
space) 

The next logical refinement is to remove the restriction for linear combinations. So higher 
order, curved surfaces could be defined in the parameter space (e.g. “2*X + 4*Y2 > 2.3”). 

5.5 Principal Component Analysis 
Another potential technique is to apply principal component analysis (PCA). Essentially 
treating each order as a series of parameter values, a PCA might identify the 
characteristics of a good vs. a poor extraction. 

 


